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Abstract—To proactively defend against intruders from readily
jeopardizing single-path data sessions, we propose a distributed se-
cure multipath solution to route data across multiple paths so that
intruders require much more resources to mount successful at-
tacks. Our work exhibits several important properties that include:
1) routing decisions are made locally by network nodes without the
centralized information of the entire network topology; 2) routing
decisions minimize throughput loss under a single-link attack with
respect to different session models; and 3) routing decisions ad-
dress multiple link attacks via lexicographic optimization. We de-
vise two algorithms termed the Bound-Control algorithm and the
Lex-Control algorithm, both of which provide provably optimal so-
lutions. Experiments show that the Bound-Control algorithm is
more effective to prevent the worst-case single-link attack when
compared to the single-path approach, and that the Lex-Control
algorithm further enhances the Bound-Control algorithm by coun-
tering severe single-link attacks and various types of multi-link at-
tacks. Moreover, the Lex-Control algorithm offers prominent pro-
tection after only a few execution rounds, implying that we can sac-
rifice minimal routing protection for significantly improved algo-
rithm performance. Finally, we examine the applicability of our
proposed algorithms in a specialized defensive network architec-
ture called the attack-resistant network and analyze how the al-
gorithms address resiliency and security in different network set-
tings.

Index Terms—Attack-resistant networks, maximum-flow prob-
lems, multipath routing, optimization, preflow-push, resilience, se-
curity.

I. INTRODUCTION

N conventional routing protocols such as OSPF [30] and RIP
I [27], a network selects a least-cost path to route data from a
source to a sink. While these protocols deliver data efficiently,
the use of a single path is vulnerable to general failures and secu-
rity threats. For instance, intruders can disrupt the data session
simply by attacking one of the intermediate links along the uti-
lized path. This singularity enables intruders to readily devote
their resources to attacking the only path.
Such networks can be protected via a secure multipath ap-
proach in which data are dispersed across multiple paths des-
tined for the sink. Each path conveys a portion of data from
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the source, and the sink assembles the data fragments received
from the various paths. If some paths fail to deliver data, then
as long as the scale of failure is modest, the sink can still re-
cover all data using redundant routing [28] or threshold secret
sharing [26]. Therefore, to successfully compromise the data
session, intruders must subvert a sufficient number of routing
paths and hence require more resources than those needed to
attack a single path. We point out that using multiple paths
can complicate the packet-reordering problem [32]. However,
it can be remedied via sophisticated coding solutions (e.g., [8])
for non-real-time data transfers or standard pre-buffering tech-
niques (e.g., [25]) for real-time data transfers. In addition, more
recent application-layer architectures such as overlay networks
(e.g., RON [3] and SOS [20]) provide a more promising plat-
form for deploying multipath routing as compared to conven-
tional layer-3 architectures. Therefore, it is feasible to adopt the
secure multipath approach to proactively accomplish routing re-
silience.

One major challenge is to design a distributed solution that
implements the process of selecting the “best” data allocation
across multiple paths through a network. The distributed solu-
tion enhances traditional centralized solutions for secure multi-
path routing such as [4], [6], [8] in different ways. First, it does
not require any network node to have full knowledge of the en-
tire network topology. It is therefore adequate for decentralized
peer systems, such as RON [3], whose nodes are located in dif-
ferent domains and are often administered independently. In ad-
dition, it allows network nodes to locally decide security costs,
bandwidth constraints, and choices of routes, and thus improves
flexibility as compared to the centralized approach.

To characterize the “best” data allocation across multiple
paths, our primary security objective is to minimize the max-
imum damage incurred by asingle-link attack (or failure), i.e.,
an intruder compromises data along a single link in a given
network. There are two reasons to justify our preliminary
analysis on a single-link attack. First, there are many attack
and failure scenarios where a single-link failure is likely to
cause the majority of problems, as the network can often be
repaired, or routes are adjusted, to account for the failure before
a subsequent outage occurs. Nevertheless, we still want to
mitigate the damage of a single-link failure since it can cause
severe throughput loss in a high-speed network within only a
few seconds. For example, a 10-second outage of an OC-48
link can incur a loss of 3 million 1-KB packets [24]. Second,
our experiments show that our solution that is designed for
preventing a single-link attack provides substantial resilience
to multiple simultaneous attacks as well. Thus, our analysis can
serve as a baseline for future work that focuses on multi-link
attacks.
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Unlike traditional load-balancing solutions that minimize the
maximum link utilization (i.e., the maximum ratio of the link
throughput to the link bandwidth), our objective is to guarantee
resilience using all available network resources. Given different
session requirements, we seek to minimize the worst-case
single-link attack while attaining the desired throughput rates
with the provisioned network bandwidth.

In this paper, we devise a distributed secure multipath solu-
tion that determines the multipath routes to maximize the secu-
rity with respect to single-link attacks. Our work is suitable for
two session models, namely:

* Fixed-rate session: a session that wishes to send data from

the source to the sink at a pre-determined rate; and

* Maximal-rate session: a session that wishes to send data

from the source to the sink at the fastest rate allowed by all
available paths in the underlying network.

Given the above session models, we first propose a dis-
tributed solution called the Bound-Control algorithm, which
provably minimizes the maximum throughput loss when a link
is attacked. We formulate this solution as a maximum-flow
problem that can be solved in a distributed fashion based on the
extension of the Preflow-Push algorithm [16].

Using the Bound-Control algorithm as a building block,
we devise a higher-complexity, but more resilient distributed
solution called the Lex-Control algorithm. It defends not only
against the worst-case link attack, but also against link attacks
that do not cause the worst damage but are still severe (e.g.,
the second and third worst-case link attacks). To achieve this
property, the Lex-Control algorithm scatters the costs incurred
by the link attacks as evenly as possible over all the links in a
network, or equivalently solves a lexicographic-optimization
problem [13], in a distributed manner.

By simulation, we evaluate the resilience of the Bound-Con-
trol and Lex-Control algorithms against different types of at-
tacks on single or multiple links. In comparison to single-path
alternatives, our results indicate that the Bound-Control algo-
rithm substantially decreases the cost of the worst-case single-
link attack (e.g., by 78% in a 200-node, 1000-link network).
Also, the Lex-Control algorithm can further reduce, by more
than 50%, the number of links that incur severe damage due
to single-link attacks, and such reduction is realized after only
three or four iterations. While the resilience enhancement of
the Lex-Control algorithm over the Bound-Control algorithm
comes at the expense of higher complexity, our simulation re-
sults show that we can limit this increase in complexity without
much loss in resilience by executing only the first few iterations
of the Lex-Control algorithm.

Finally, we demonstrate the applicability of both Bound-Con-
trol and Lex-Control algorithms in an attack-resistant network
(e.g., SOS [20], a specialized network that protects end hosts
with a defensive architecture. Using [7] as our foundation, we
analyze how our proposed multipath algorithms can be deployed
to provide routing resilience and in the meantime secure the net-
work against malicious attacks.

The paper proceeds as follows. In Section II, we formulate
the secure multipath approach. Sections III and IV present
the Bound-Control and Lex-Control algorithms, respectively.
In Section V, we report several experiments that evaluate the
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TABLE 1

MAJOR NOTATION USED IN THIS PAPER
Defined in Section II:
N set of nodes
L set of links
g network (AN, £)
s source node
t sink node
L(u)  set of outgoing links [ € £ of node u € N’
X session throughput from source s to sink ¢
x proportion of session data carried by link [ € £
x proportion vector (z;,1 € L)
c security constant of link [ € £
a; attack cost cjz; of link [ € £
a* minimized worst-cast attack cost
cap(l) capacity of link [ € £ in maximum-flow problems
fi flow of link | € £ in maximum-flow problems
f flow vector (f;,1€ L) in maximum-flow problems
fr resulting maximum-flow value
B bandwidth of link [ € £
b fraction bound of link [ € £
a non-increasing attack-cost sequence
a* lexicographically optimized a
Defined in Sections III and IV:
fs flow value broadcast by source s
U sufficiently large value
G+ residual network with respect to f*
Defined in Section VI:
A set of access points (APs)
T set of targets
P set of paths between APs and targets
Ga attack-resistant network (A, 7, P)
A(j)  set of APs from which target j €7 is reachable
T (i)  set of targets that can be reachable from AP i€ A
Cu event that node u€ AU 7 is compromised
Dy event that node u€ AU 7 is under DoS attacks
P(E) probability that event E occurs
Di blocking probability of AP 1€ A

algorithms under different classes of link attacks. Section VI
discusses how to apply our algorithms in an attack-resistant
network and presents simulation results of their performance.
Section VII reviews related work. Section VIII discusses the
practical issues of our work and suggests future directions.
Section IX concludes.

II. PROBLEM FORMULATION

In this section, we formalize the secure multipath approach as
a minimax-optimization problem and hence its equivalent max-
imum-flow problem. This formulation will also be used later
when we include link-bandwidth constraints and lexicographic
optimization. Note that the following formulation is generally
based on [1], [2] [4], [5], [13], [15], [16], [26]. To aid our dis-
cussion, Table I summarizes the major notation that we use in
this paper.

Our discussionrelies on the concepts of the maximum flow and
the minimum cut [2]. Given a network with anumber of nodes and
links, the maximum-flow problem is to determine the maximum
flow that can be sent from a source node s to a sink node ¢ subject
to the capacity constraints (i.e., each link has flow bounded by
the link capacity) and the flow-conservation constraints (i.e., the
net flow entering any node except the source and the sink equals
zero). Suppose that we partition the nodes into two sets S and S,
where seS andt € S. A cut refers to the set of links directed from
S to S. A minimum cut is the cut that has the minimum capacity
(i.e., the minimum sum of capacities of all links in the cut). The
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Fig. 1. Optimal solutions to the three optimization problems: (a) minimax optimization, (b) minimax optimization with the bandwidth constraints, and (c)
lexicographic optimization. Every link [ has ¢; = 1 and is associated with a triple (x,, fi, bl), where x; and f; are the solutions after the optimization problems
are solved, and b; (defined for (b) and (c) only) denotes the initial fraction bound assigned to link [. Note that b, is different from its initial value after the
lexicographic-optimization problem is solved (see Section IV and Fig. 3 for details).

max-flow min-cut theorem states that the maximum-flow value
equals the capacity of the minimum cut.

We are interested in a connected, directed, and acyclic net-
work that is viewed as a graph G = (N, £), where N is the set
of nodes and L is the set of directed links. Our analysis is based
on a single data session with a source node s and a sink node ¢.
We emphasize that our analysis can be generalized to a homoge-
neous class of multiple data sessions by mapping source s and
sink ¢ to the ingress and egress points of the network, respec-
tively. Suppose that source s sends data to sink ¢ with a session
throughput given by X (say, in Mb/s). We let z;, 0 < z; < 1,
be the proportion of the entire session data carried by link [ € £
(i.e., z; equals the throughput of link / divided by X) and let
x = (21,1 € L) be the corresponding proportion vector.

Our analysis mainly focuses on a single-link attack, but we also
address a single-node attack in Section VI. In this paper, we focus
on a threat model in which the damage due to the attack on link
[ € Lnotonlyisproportional tothe throughputsentoverlink/, but
also depends on other factors such as the likelihood that an attack
can successfully bring down link /. We characterize such damage
as an attack cost a; = cjx;, where c;, which we term the security
constant of link [, specifies the vulnerability of link /. Intuitively,
the attack cost is used to measure the scale of throughput loss
due to a single-link attack. Note that ¢; can have several physical
interpretations, such as the probability that link [ is successfully
attacked given that the intruder attempts to attack link [ [5], the
failure probability of link [ [4], or the proportion of loss of data
traversing link [ when it is attacked. To ensure that every link [
has a consistent interpretation of ¢;, every node has to calibrate
¢ with respect to an agreed-upon definition of an attack. Also, to
enable us to interpret ¢; as a probability or proportion, we require
that 0 < ¢ < 1 for every link [ € L. With an agreed-upon
attack model, every node u can then determine in advance ¢; for
each of its own outgoing links [ € L(u), where £(u) is the set of
all outgoing links of node u, using vulnerability modeling [10],
statistical measurements of reliability indexes [15], or security
monitoring systems [26]. We point out that if an accurate estimate
of ¢; is not available, we can set ¢; = 1, meaning that link [ has all
its data lost when it is under attack, and our analysis still applies
to this worst-case scenario.

A. Minimax Optimization

To mitigate the worst damage due to a single-link attack, our
objective is to decide a feasible proportion vector x that mini-
mizes the maximum attack cost over all links in the network. This
can be viewed as the following minimax optimization problem:!

a* = min max a; = min max ¢;x;
x leL x leL

subjectto 0<z; <1, VieL

ey

Problem 1 can be solved in polynomial time via linear pro-
gramming, but this is a centralized solution and requires the in-
formation of the entire network topology. To implement a dis-
tributed solution, we can first transform the problem into a max-
imum-flow problem by setting the capacity of every link /, de-
noted by cap(l), as the reciprocal of ¢; [1], and then solve for
the maximum flow using the distributed Preflow-Push algorithm
[16], which is summarized as follows. Source s first initiates the
algorithm by pushing the maximum possible flow to its neighbor
nodes. All nodes except source s and sink ¢ then attempt to push
the flow toward sink ¢ along the estimated shortest paths until
the resulting maximum flow reaches sink ¢. Any excess flow is
pushed back to source s. In [16], it explains how to implement
the Preflow-Push algorithm in a distributed and asynchronous
fashion. We refer readers there for a detailed discussion. For
completeness, we include the pseudo-code of the Preflow-Push
algorithm in our technical report [23].

Let f = (f;,! € L) be the flow vector where f; denotes the
flow of link [, and f be the net flow entering sink ¢. Problem 1
can thus be mapped to the following maximum-flow problem:

= mfaxf

subjectto 0< f; <1/¢, VIEL, 2)
where the solutions to Problems 1 and 2 are related by a* =
1/f*and z; = fi/f*,Vl € L.

To illustrate both problems, Fig. 1(a) depicts a network where
¢; = 1for all links /. From the Preflow-Push algorithm, we know

I All problems presented in this paper are under flow-conservation constraints,
although the convention is omitted for brevity.
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the maximum flow is f* = 2 and thus the worst-case attack
cost is minimized at a* = 0.5. Also, the algorithm returns the
corresponding vectors f and x.

B. Minimax Optimization With Bandwidth Constraint

One limitation of Problem 1 is that every link is assumed
to have infinite bandwidth so that it can accommodate the en-
tire session data. To incorporate the link-bandwidth constraints,
we assume that each node u specifies a priori a bandwidth B,
(say, in Mb/s) for its outgoing links [ € L(u). We let b, =
min(B;/X,1), where 0 < b; < 1, denote the fraction bound
of link [ that bounds from above the proportion of data that can
be sent through link / for a given session throughput X. We then
incorporate the fraction bound into Problem 1 as:

a® =min max a; = min max ¢;z;
x leL x leL

subject to 0<ux; <b;, VIeL. 3)

The corresponding maximum-flow problem becomes:

f* =max f

subject to 0 < fi <min(1/¢,bif), Vie L. (4

For clarity, the term bandwidth (i.e., B;), represents the
maximum amount of data that can be sent across a link, and
the term capacity (i.e., cap(l) = min(1/c;, b f)), denotes the
upper bound of the link flow in the transformed maximum-flow
problem. While the bandwidth B is fixed, the capacity cap(l)
varies depending on the flow value f that reaches sink ¢.

Fig. 1(b) depicts the case where we assign the fraction bound
b; = 0.4 to the link from node f to sink ¢ and b; = 1 to the rest.
Similar to Problem 1, we can solve Problem 3 in a centralized
manner via linear programming. To implement a distributed ap-
proach, in Section III, we develop the Bound-Control algorithm,
which is built upon the Preflow-Push algorithm to solve Problem
4 and hence Problem 3.

C. Lexicographic Optimization

A limitation of the previous problems is that they are con-
cerned only with how to minimize the worst-case attack cost,
but do not attempt to reduce the costs of severe link attacks. For
example, in Fig. 1(a) and (b), the attack costs are unevenly dis-
tributed. Specifically, in Fig. 1(b), there are six links whose at-
tack costs are at least 0.4 each. By evenly distributing the costs
as shown in Fig. 1(c), only two such links exist. Thus, we re-
duce the number of links where the single-link attacks can lead
to severe damage.

To formalize the concept of the even distribution of at-
tack costs, we let a = (c;,z1,, 1, o1, , '7Cl\£\$l|£\>’ where
li,l2,-++,ljz) € L, be a non-increasing attack-cost sequence.
The distribution of the attack costs is said to be the most even
if the associated attack-cost sequence a is lexicographically
minimized, i.e., for any other non-increasing attack-cost se-
quence &’ = (¢, 7] , €1, T, ", cl,‘xfw) # a, there exists 7,
where 1 < ¢ < |£], such that ¢;;z;;, = cljx;] for 7 < 4 and
w1, < ¢,wy, . Let lexmin(.) be the function that returns the
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lexicographically minimum sequence a*. We then express the
lexicographic-optimization problem as:

a* =lexmina = lexmin (¢, z,, -, ¢z, )
X X

subject to x = arg min max c;z;,
x leLl

0<z;<b, VlecL 5)

Hence, the corresponding maximum-flow problem is:

c c
a* =lexmina = lexmin < ufi e to 1y >
f f f f
subject to f = arg Infax f,

0< fi <min(1/¢, bif), VieL. 6)

In Section IV, we propose the Lex-Control algorithm to ad-
dress this problem. By extending the Bound-Control algorithm
and setting the fraction bounds of the links appropriately, the
Lex-Control algorithm can determine the lexicographically op-
timal solutions for Problems 5 and 6 in a distributed fashion.
This type of lexicographic-optimization problem was first ana-
lyzed in [13], from which our Lex-Control algorithm has two
main distinctions. First, while the analysis in [13] assumes no
link-bandwidth constraint, we explicitly incorporate this con-
straint into our algorithm. Furthermore, our algorithm allows
distributed implementation, while the solution in [13] is cen-
tralized and requires the knowledge of the whole network state.

III. BOUND-CONTROL ALGORITHM

This section presents the Bound-Control algorithm, which
solves Problems 3 and 4, in which a fraction bound b; is im-
posed on every link [ € £. We describe how it operates and how
it supports both fixed-rate and maximal-rate session models de-
scribed in Section 1. We refer readers to [23] for the proof of its
correctness.

Here, we let f be the flow value that source s broadcasts to
the network in the Bound-Control algorithm. We also let U be a
sufficiently large value that approximates infinity. For instance,
U can be the largest value that can be processed by the imple-
mentation.

A. Description of the Bound-Control Algorithm

The idea of the Bound-Control algorithm is to repeatedly
solve a maximum-flow problem via the Preflow-Push algorithm
and adjust the link capacities until the maximum-flow result
converges to the optimal solution. The Bound-Control algorithm
is presented in Algorithm 1.

In Algorithm 1, source s first broadcasts a sufficiently
large value fs = U to initiate the Bound-Control algo-
rithm (line 1). Next, all network nodes execute the Pre-
flow-Push algorithm subject to the link-capacity constraint
cap(l) = min(1/¢;, b fs) = 1/¢ for every link [ € L (lines
2-5). By checking the amount of flow that has been sent out,
source s can determine the maximum-flow result. Source s then
broadcasts the computed maximum-flow result represented by
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Fig. 2. Example of the Bound-Control algorithm in Algorithm I for the network shown in Fig. 1. Every link / has ¢; = 1 and is associated with a triple (z;, f1, b;).
The figures illustrate: (a)—(c) the flow values after the first three executions of the Preflow-Push algorithm (lines 5 and 11) and (d) the optimal solution returned
from the Bound-Control algorithm. (a) first Preflow-Push: maximum flow = 2; (b) second Preflow-Push: maximum flow = 1.8; (c) third Preflow-Push:

maximum flow = 1.72; (d) optimal solution: f* = 1.67,a* = 1/f* = 0.6.

fs to the network (lines 7-8) so that every network node can
adjust the capacities of its outgoing links (lines 9—11).

Algorithm 1 Bound-Control

1: source s broadcasts f; = U to all nodes u € N/
2: forallu € N do
3: foralll € L(u) do
4: node u sets cap(l) = min(1/¢;, by fs)
5: all nodes run Preflow-Push
6: repeat
7:  source s sets fs to be the maximum-flow result
8: source s broadcasts f, to all nodes u € N
9: forallu € N do
10: forall/ € L(u) do
11: node u sets cap(l) = min(1/c;, by fs)

12:  all nodes run Preflow-Push
13: until source s finds that f, equals the maximum-flow
result

Afterward, all nodes execute again the Preflow-Push algorithm
under the new link capacities (line 12). The algorithm iterates
in the repeat-until loop (lines 7—12), and terminates if the max-
imum flow obtained from the Preflow-Push algorithm equals the
flow value f that has just been broadcast (line 13). The optimal
value f* is given by f,. Fig. 2 illustrates how the Bound-Con-
trol algorithm works.

B. Discussion of the Bound-Control Algorithm

In actual implementation, we can support both fixed-rate and
maximal-rate session models (see Section I by determining the
feasible session throughput X and hence the fraction bound b,
in a distributed fashion. Source s first initiates the Preflow-Push
algorithm to decide the feasible session throughput X subject to
the bandwidth constraint B; for all | € £, and then broadcasts X
to all the nodes in the network so that they can specify the frac-
tion bound b; for their associated links [. The fixed-rate session
model is thus provided by sending data at the fixed rate X . If X
is the maximum flow returned from the Preflow-Push algorithm,
then we can achieve the maximum security under the maximum
session throughput using the Bound-Control algorithm. Thus,
the maximal-rate session model is supported.

We can further enhance the efficiency of the implementation
of the Bound-Control algorithm via bisection search to locate
the optimal value f* in the Bound-Control algorithm as fol-
lows. Suppose that f;o,, and fp;q, denote the lower and upper
bounds, respectively. Source s first initializes fj,,, to be zero
and fpign to be twice the maximum-flow result determined by
the first execution of the Preflow-Push algorithm (i.e., line 5 of
Algorithm 1). It then broadcasts f; = (fiow + frignh)/2 to the
network. If the next execution of the Preflow-Push algorithm re-
turns the maximum flow less than f;, then source s assigns the
maximum-flow result to fy;45. Otherwise, the result is assigned
to fi1,., instead. Source s repeatedly searches for fs, and the al-
gorithm terminates if the most recently broadcast value fs and
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Fig. 3. Example of the Lex-Control algorithm in Algorithm 2 for the network shown in Fig. 1. Every link [ has ¢; = 1 and is associated with a triple (z;, fi, b;).
After every execution of the Bound-Control algorithm (lines 1 and 11), the nodes identify the critical links (in dashed arrows) and adjust the fraction bounds
b, accordingly (lines 6-10). (a) first Bound Control: maximum flow = 1.67; (b) second Bound-Control: maximum flow = 3.33; (c) third Bound-Control:

maximum flow = 5.

the latest maximum-flow result are equal (or different by some
tolerance value depending on the implementation).

With bisection search, the complexity of the Bound-Control
algorithm is O(pT’), where p is the number of precision digits
describing all possible flow values and T is the complexity
of executing the Preflow-Push algorithm. For instance, if
the Bound-Control algorithm implements the distributed and
asynchronous version of the Preflow-Push algorithm [16], it
introduces O(p|N'|?|£]) messages and takes O(p|A\|?) time to
converge.

IV. LEX-CONTROL ALGORITHM

In this section, we present the Lex-Control algorithm, which
solves the lexicographic optimization specified in Problems 5
and 6. We explain how the Lex-Control algorithm is extended
from the Bound-Control algorithm. Its proof of correctness can
be found in [23].

A. Description of the Lex-Control Algorithm

To understand the Lex-Control algorithm, suppose that for
a particular maximum-flow problem, we have found the max-
imum flow f* and the minimized worst-case attack cost a* =
1/f*. The network will then constitute a set of critical links,
defined as the links [ € £ whose attack costs cannot be fur-
ther decreased without increasing a*. The idea of the Lex-Con-
trol algorithm is to iteratively solve a maximum-flow problem
using the Bound-Control algorithm and identify additional crit-
ical links until the lexicographically optimal solution a* is ob-
tained.

Before describing the algorithm, we define the residual net-
work Gy = (N, L+) with respect to the maximum flow f* as
follows [2]. Suppose that the maximum flow f* is solved and
each link [ € £ carries a flow f;. To construct L¢-, for each
link [ € £ directed from node u to node v, where u,v € N, if
cap(l) — fi > 0, we include a forward link from w to v into L+,
and if f; > 0, we include a backward link from v to u into L«.

Algorithm 2 summarizes the Lex-Control algorithm. All
nodes first run the Bound-Control algorithm to minimize
the worst-case attack cost subject to the capacity constraint
cap(l) = min(1/e;,bif) for all [ € L in the transformed
maximum-flow problem (line 1). Source s then broadcasts the

computed maximum flow f* (line 4). Each node runs a con-
nectivity-checking algorithm (e.g., the breadth-first search) on
Gy« (lines 6-8). If its neighbors in G are not reachable in G-,
then the corresponding links between itself and its neighbors
in G are lying on a minimum cut and hence are critical (see
the proof in [23]) It modifies ¢; and b; for each spotted critical
link { (lines 9—;10) so that cap(l) is adjusted to bound only the
proportion of flow currently carried. Here, we set 1/¢; to be
a sufficiently large value U (defined in Section III) so that it
does not affect cap(l). The algorithm iteratively identifies the
critical links (lines 3—12, collectively defined as a lexicographic
iteration), and terminates when the maximum flow computed
from the Bound-Control algorithm equals U. Fig. 3 depicts
how the Lex-Control algorithm computes the lexicographically
optimal solution.

Algorithm 2 Lex-Control

1: all nodes run Bound-Control

2: source s sets f* to be the computed maximum flow

3: while f* < U do

4:  source s broadcasts f* to all nodes u € N

5. forallu € A do

6: node u runs a connectivity-checking algorithm on
7: forall[ € L(u) do

8 if [ is a critical link then

9: node u sets ¢; = 1/U
10: node u sets by = fi1/f*

11:  all nodes run Bound-Control
12:  source s sets f* to be the computed maximum flow

B. Discussion of the Lex-Control Algorithm

The complexity of the Lex-Control algorithm is dominated
by the executions of the Bound-Control algorithm. Since each
lexicographic iteration discovers at least one critical link, the
Lex-Control algorithm has a complexity thatis O(|L|T"), where
T’ is complexity of the Bound-Control algorithm.

Instead of locating all critical links, we can simply perform
a pre-determined number, say k, of lexicographic iterations to
identify a subset of critical links in order to gain performance
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Fig. 4. Experiment 1: Analysis of the Bound-Control algorithm at different session throughputs. (a) Minimized worst-case attack cost; (b) number of executions

of the Preflow-Push algorithm; (c) routing overhead.

benefits in actual implementation. Since the later lexicographic
iterations attempt to identify the critical links with modest attack
costs, the most substantial security improvements occur during
earlier lexicographic iterations. With this modification, the com-
plexity of the Lex-Control algorithm is reduced to O(kT").

V. EXPERIMENTS

In this section, we perform an extensive experimental study
on the proposed algorithms via simulation. We consider three
network settings, each of which contains 200 nodes, connected
by 600, 800, and 1000 links, respectively. We use BRITE
[29], a network topology generator, to construct 50 experi-
mental topologies for each network setting. All nodes within a
topology are randomly connected and placed in a rectangular
two-dimensional plane. We dedicate the nodes closest to and
farthest from the origin (i.e., the bottom left-hand corner of
the plane) to be source s and sink ¢, respectively. To construct
a directed acyclic topology, for each link between any two
nodes v and v, we direct it from node « to node v if node u’s
Euclidean distance to the origin is less than that of node v.
Moreover, each link [ is uniformly assigned a security constant
c; between 0 and 1 and a bandwidth B; between 1 and 5. We
then analyze the average performance of the algorithms over
the 50 topologies.

Our experiments focus on three metrics, namely: 1) attack
cost (defined in Section II), which measures the resilience of
the proposed algorithms toward various types of link attacks;
2) number of executions of the Preflow-Push algorithm, which
measures the message complexity and the convergence time of
the proposed algorithms; and 3) routing overhead, which is de-
fined as the ratio of the average hop count from source s to
sink ¢ in our multipath approach to the minimum hop count in
single-path routing. We can compute the routing overhead as
follows. Let r(u) be the hop count from node w to sink ¢ and
luv € L bethe link directed from node « to node v. Recall that z;;
denotes the proportion of the session data carried by link /. The
average hop count of the multipath routing is thus given by the
recursive equation r(s) = > (%1, / D e T )L+
r(u)], where r(t) is initialized to be zero. We then divide r(s)
by the minimum hop-count in single-path routing to obtain the
routing overhead.

Experiment 1 (Analysis of the Bound-Control Algorithm at
Different Session Throughputs): This experiment studies how
the Bound-Control algorithm protects against the worst-case

TABLE II
EXPERIMENT 1: WORST-CASE ATTACK COST WHEN A SINGLE PATH WITH
THE MINIMUM HOP-COUNT IS USED

Network setting Attack cost
200 nodes, 600 links 0.73
200 nodes, 800 links 0.72
200 nodes, 1000 links 0.78

single-link attack at various session throughputs. For each
topology, we use the Preflow-Push algorithm to determine the
maximum possible session throughput subject to the link-band-
width constraints. We then calculate the throughput rates that
are given by different proportions of the determined maximum
session throughput to address both fixed-rate and maximal-rate
session models (see Section I). Finally, we assign the appro-
priate fraction bounds to all links (see Section III-B). Here,
we evaluate the degree of resilience based on the minimized
worst-case attack cost.

Fig. 4 depicts the performance metrics at different session
throughputs, and Table II shows the worst-case attack cost when
a single path with the minimum hop-count is used. Fig. 4(a)
shows that the Bound-Control algorithm substantially reduces
the worst-case attack cost when compared to the single-path ap-
proach (e.g., from 0.78 to 0.17, or by 78%, for the 1000-link
network that uses the maximal-rate model for the maximum ses-
sion throughput). Specifically, we observe two kinds of trade-
offs. First, as the session throughput increases, links experi-
ence tighter fraction bounds in general. This leads to more Pre-
flow-Push executions and higher worst-case attack cost. Second,
while a network with more links attains a smaller worst-case at-
tack cost, it also incurs more messages in running the Bound-
Control algorithm as well as higher routing overhead.

Experiment 2 (Analysis of the Lex-Control Algorithm at Dif-
ferent Numbers of Lexicographic Iterations): This experiment
considers how the Lex-Control algorithm prevents the severe
single-link attacks when it executes different numbers of lexi-
cographic iterations. We regard a single-link attack as “severe”
if its resulting attack cost is at least 25% of the worst-case one.
Here, for each topology, we evaluate the algorithm using the
maximal-rate session model (see Section I) in which the max-
imum session throughput is determined as in Experiment 1.
Also, we use the number of links that incur severe attack costs
as the resilience measure.

Fig. 5 plots the resulting metrics. It shows that the Lex-Con-
trol algorithm can reduce the number of links where the
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link attacks; (b) average aggregate attack cost under the uniform 10-link attacks; (c) average aggregate attack cost under the uniform 50-link attacks.

single-link attacks are severe. The reduction is more salient
in the 1000-link network (e.g., by more than 50% in three or
more lexicographic iterations). The trade-off is that the required
number of executions of the Preflow-Push algorithm increases
linearly with the number of lexicographic iterations. One
interesting side benefit of the Lex-Control algorithm is that it
alleviates the routing overhead as well. A possible explanation
is that shorter paths incur smaller attack costs in general, so as
the Lex-Control algorithm proceeds, it identifies these more
secure shorter paths and hence reduces the routing overhead.
From Fig. 5, the benefits of the Lex-Control algorithm are more
prominent in the first three lexicographic iterations. Thus, in
practice, it is reasonable to run a small number of lexicographic
iterations. This allows system designers to select the trade-off
of diminishing returns.

Experiment 3 (Analysis of the Lex-Control Algorithm Sub-
ject to Different Scales of Uniform Link Attacks): Although our
analysis concentrates on the worst-case single-link attack, since
the Lex-Control algorithm seeks the most balanced distribution
of attack costs of all links, we envision that it also minimizes the
average attack cost under uniform link attacks, i.e., an intruder
uniformly attacks a single or multiple links that carry session
data. In this experiment, we investigate this potential benefit by
considering different scales of uniform link attacks.

In the experiment setup, we let the security constant c; be the
proportion of loss of data traversing link / that is being attacked
(see Section II), so the attack cost of link [ (i.e., a; = ¢;x;) repre-
sents the actual proportion of data loss for the data session. For
the single-link attack, we compute the average attack cost by
dividing the total attack cost of all links by the number of links
that carry data. For multi-link attacks, we look at the amount of

remaining data that actually reach the sink in order to compute
the aggregate attack cost. Then we simulate 50 multi-link at-
tacks for each topology to obtain the average aggregate attack
cost. Here, we focus on the maximal-rate session model as in
Experiment 2.

Fig. 6 illustrates the attack costs incurred by the uniform at-
tacks on one, 10, and 50 links. It shows that the Lex-Control
algorithm can mitigate the threats of uniform link attacks. For
instance, given that 50 out of 1000 links are attacked, the av-
erage aggregate attack cost is reduced by 40% (or from 0.75
to 0.45) with four or more lexicographic iterations. Therefore,
apart from the worst-case single-link attack, the Lex-Control al-
gorithm also enhances the robustness of the network subject to
various scales of uniform link attacks.

Experiment 4 (Analysis of the Lex-Control Algorithm Subject
to the Proportional and Worst-Case Multi-Link Attacks): The
final experiment assesses the Lex-Control algorithm under the
proportional and worst-case multi-link attacks. In the propor-
tional multi-link attack, an intruder attacks a number of links
such that the probability that each link is attacked is directly
proportional to its attack cost. In the worst-case multi-link at-
tack, however, the intruder deterministically attacks the links
with the highest attack costs. We use the same setting as in Ex-
periment 3 to evaluate the Lex-Control algorithm based on the
maximal-rate session model.

Fig. 7 illustrates the average aggregate attack costs when five
links are attacked. It shows that in general, the Lex-Control al-
gorithm can reduce the average aggregate attack costs in both
proportional and worst-case attacks. For instance, in a 1000-link
network, the attack cost is decreased from 0.3 to 0.23, or by
23%, in the proportional 5-link attack, and from 0.59 to 0.52, or
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by 12%, in the worst-case 5-link attack. Also, around four lexi-
cographic iterations are sufficient to achieve such reduction.

Summary: The experiments show that the Bound-Control al-
gorithm significantly protects against the worst-case single-link
attack, and that the Lex-Control algorithm provides additional
protection by reducing the number of links with severe attack
costs. Moreover, the Lex-Control algorithm effectively defends
against the uniform, proportional, and worst-case multi-link at-
tacks, with the majority of benefits occurring within the first few
lexicographic iterations.

VI. APPLICATION IN ATTACK-RESISTANT NETWORKS

To further examine the applicability of both Bound-Control
and Lex-Control algorithms, we consider their use in an at-
tack-resistant network [7], a specialized network that protects
end hosts by surrounding them with a defensive architecture.
One example is Secure Overlay Services (SOS) [20], which con-
structs the defensive architecture with a set of application-level
overlay nodes layered atop the underlying network architecture.
According to [7], an attack-resistant network should satisfy two
crucial but contradicting criteria termed (1) resiliency: the net-
work should offer alternate paths in the face of node failures,
and (2) security: the network should confine the damage caused
by compromised nodes. In this section, we propose how to bal-
ance these two criteria using our multipath solution and evaluate
their trade-off via simulation.

A. Overview

Following [7], [20], we first overview the architecture of an
attack-resistant network as illustrated in Fig. 8. To communi-
cate with a protected sink ¢, a source s first connects to an ac-
cess point (AP), which authenticates incoming packets. Authen-
ticated packets are then routed from the AP through an intercon-
nection network to a farget (a.k.a. secret servlets [20], which re-
lays packets to sink ¢. Intuitively, the AP and the target can be
viewed as an entry point to the attack-resistant network and to
sink ¢, respectively, such that no packet can reach sink ¢ without
properly going through an AP followed by a target. In a gen-
eral attack-resistant network, source s can reach sink ¢ using
multiple paths through different APs and targets. Also, the APs
function independently from one another [7]. Thus, we can de-
ploy our distributed multipath solution in this type of attack-re-
sistant network to further protect the underlying secure commu-
nication.

access
points

interconnection

targets
network 8

Fig. 8. Example of an attack-resistant network.

In order to secure the targets and hence the end hosts, the
identities of the targets are hidden from the public and known
only to a small set of nodes (a.k.a. beacons [20]) which are in
turn known only to the associated APs. However, if an AP is
compromised, then an intruder can identify and hence attack
the associated targets through the compromised AP. This poses
a trade-off issue between resiliency and security: for resiliency,
each AP should be associated with sufficient targets so as to se-
lect an alternate target if one target becomes unavailable, while
for security, each AP should not be assigned too many targets
so as to suppress the number of targets being attacked when an
AP is compromised.

To address the trade-off between resiliency and security, [7]
formulates an assignment problem, namely, given a fixed data
allocation on each AP, the objective is to find an optimal path
assignment between the APs and targets that minimizes the
blocking probability, defined as the probability that a request
cannot reach a protected end host due to the attacks on the
APs and targets. However, the existence of a polynomial-time
optimal algorithm to this problem remains an open issue. In
addition, the approximation algorithms in [7] do not take into
account load balancing on the APs and targets. Therefore, we
address the problem from another perspective in which our
goal is to assign transmission rates at the APs instead of finding
an optimal path assignment. We formalize the problem in the
following discussion.

B. Model

We first formulate the problem based on [7]. We consider a
network graph G, = (A, 7,P), where A is the set of APs, T
is the set of targets, and P is the set of directed paths from the
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APs to the targets. We let A(j) and 7 (4) be the sets of APs and
targets, respectively, such that if there exists a path in P from
access pointi € Atotargetj € 7, theni € A(j) and j € 7 (3).

We focus on two types of attacks: (1) compromise attack, in
which an intruder obtains unauthorized access to a node, and
(2) denial-of-service (DoS) attack, in which an intruder pre-
vents a node from providing legitimate service, for example, by
flooding the victim node with huge traffic. Let C,, and D, be
the respective events that node v € AU 7 is compromised and
is vulnerable to DoS attacks, and C,, and D,, denote their com-
plements. Let also P(E) be the probability that event F occurs.
In practice, the attack probabilities P(C,,) and P(D,,) can be
estimated via the approaches described in Section II. Since the
identities of the targets are hidden from the public, we assume
that an intruder can only mount the attacks through the APs. It
follows that P(C;) = 0 and P(D,|C;,,---,C;,) = 0 for all
j€Tand iy, -, i € A(j). We assume that if AP ¢ is com-
promised, then an intruder will identify all targets j € 7 (z) and
launch DoS attacks on them from the compromised AP . This
implies P(D;|C;) = 1forall j € 7 (7). Finally, we assume that
C!s and D/ s are mutually independent for all 7 € A.

An AP i € A is said to be blocked if it is compromised, it
is the victim of a DoS attack, or its associated targets are all
victims of a DoS attack. Thus, the blocking probability p; at AP
1 is given by

pi=1-P(D;)P U D; . @)

JET (3)

Note that the event | jeT () D; implies that AP i is not com-
promised. To compute P(U;c7(; D;), we note that as a result
of the independence assumption, the probability that all & tar-
gets ji,---, 7k € 7T are not vulnerable to DoS attacks is given

by
11

i€7T (j1)Y--UT (jr)

P(D;n---nD;) = P@). ®)

We then evaluate P(U;cr D;) via the inclusion-exclusion
principle [9].

To apply our algorithms, we extend the single-link attack
model in Section II problem formulation to a single-node attack
model (e.g., via node splitting [2]). We let x,,, where 0 < z,, <
1, be the proportion of data carried by node u, where u € AUT
can be an AP or a target, and x = (z,,u € AU T) be the
proportion vector. The attack cost of node w is thus defined as
Gy = CyTy, Where ¢, is the security constant of node u. Using
the blocking probability as our measure, for every AP 7 € A, we
set ¢; = p;, indicating that the attack cost of AP ¢ is quantified
as the expected proportion of data loss when AP ¢ is blocked. In
contrast, since the blocking probability is calibrated only at the
layer of APs, for every target j € 7, we set ¢; = 0. To deter-
mine the security constant, each AP can independently consult
its attached targets for the compromise probabilities of their as-
sociated APs. It then computes the blocking probability based
on (7) and (8). Furthermore, for load balancing, each of the APs
and targets can assign itself a bandwidth constraint and deter-
mine its fraction bound b,,, where 0 < b, < 1foru € AUT,
using either the fixed-rate model or the maximal-rate model.
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tivity. (a) Minimized worst-case attack cost; (b) aggregate attack cost.

Given the above formulation, our primary objective is to de-
cide the data allocation x = (z,,u € AU 7T) that minimizes
the worst-case attack cost of an AP subject to bandwidth con-
straints. Thus, we have the following optimization problem:

a* = minmax a; = min maxc;z;
X 1€A x €A
subjectto 0<x, <b,, Yuec AUT. 9)

‘We can further extend Problem 9 to a lexicographic optimiza-
tion problem. We can then readily obtain the optimal data allo-
cation using the Bound-Control or Lex-Control algorithms.

C. Evaluation

We conduct a simulation study on three attack-resistant net-
work settings, each of which has 30, 50, and 100 APs, respec-
tively, together with 20 targets. We define connectivity as the
number of targets to which each AP is connected. For each net-
work setting and connectivity, we consider the average results
over 50 topologies. Within a topology, each AP is connected
randomly to different targets according to the connectivity and
is assigned the compromise and DoS probabilities uniformly at
random between 0 and 0.08. Moreover, we assume that each AP
and its paths to the targets have infinite bandwidth and that each
target has the same bandwidth. We then determine the fraction
bounds of the APs and targets using the maximal-rate model.

We first analyze the minimized worst-case attack cost a* as
well as the aggregate attack cost A* of the five APs that have
the highest attack costs. We compute a* and A* respectively
via the Bound-Control algorithm and the Lex-Control algorithm
with three lexicographic iterations. Fig. 9(a) and (b) plots ¢* and
A* versus the connectivity, respectively. Initially, the resilience
of an attack-resistant network increases with the connectivity
and both attack costs decrease. As the connectivity further in-
creases, the targets are attached to more APs that can be com-
promised. Thus, they become more vulnerable to DoS attacks,
and the attack costs increase. Such increase is more severe when
a network has more APs (e.g., 100 APs). This shows that a net-
work with more APs and higher connectivity does not neces-
sarily offer better protection.

To evaluate the effectiveness of the multipath algorithms, we
normalize a* to the respective cost when no Bound-Control al-
gorithm is used (i.e., only the maximal-rate model is satisfied),
and we also normalize A* to the respective cost when only the
Bound-Control algorithm is used. Fig. 10(a) plots the normal-
ized a* and shows that the Bound-Control algorithm can effec-
tively reduce the worst-case attack cost of an AP (e.g., by at least
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80% for 100 APs and 20 targets). In Fig. 10(b), we plot the nor-
malized A* and observe that the Lex-Control algorithm reduces
the aggregate attack cost at low connectivities. As the connec-
tivity increases, each AP is assigned more targets and is less con-
strained by the bandwidth requirement. Thus, the Bound-Con-
trol algorithm immediately minimizes the worst-case attack cost
at all APs (i.e., where the minimum cut lies) and has the same
result as does the Lex-Control algorithm.

VII. RELATED WORK

Multipath routing was first studied in [28], in which data is
transmitted over multiple disjoint paths as a means to provide
load balancing and routing resilience. Redundancy can be added
to the transmitted data so that the receiver side can fully recon-
struct the data in the presence of moderate data loss. Based on
this intuition, we apply multipath routing to address the pres-
ence of link attacks using optimization models.

One possible optimization model for multipath routing is
based on minimax optimization. Previous studies consider
the load-balancing problem (e.g., in [1], [17]), multipath
solutions to combat link attacks (e.g., in [5], [6], [18]), and
the network-intrusion problem (e.g., in [21]). Note that the
above studies focus on centralized algorithms that assume the
knowledge of the network topology. We extend beyond the
previous studies by devising a distributed solution that can
handle link-bandwidth constraints.

Another possible optimization model is based on lexico-
graphic optimization, which has been studied in [11], [13]
for a network setting. While [11] considers only the lexico-
graphic optimization of the flows of the links attached to the
source node, [13] extends [1] to lexicographically optimize
the flows of all the network links in a centralized manner.
Specifically, the idea of [13] is to solve the minimax problem
via the maximum-flow problem for a given network, identify
the minimum-cut links, and recursively solve the minimax
problems for the subnetworks separated by those links. Our
Lex-Control algorithm supports the distributed implementation
in the presence of link-bandwidth constraints.

Analytical studies regarding secure multipath routing can be
found in [4]-[6], [18], [26], [33] in which the vulnerability of
each node is characterized by an attack (or failure) probability.
In particular, [26], [33] consider disjoint paths among network
nodes, while [4] relaxes this disjointness requirement and pro-
poses a resilient routing scheme using two non-disjoint paths.
Our algorithms, as in [5], [6], [18], explore a higher degree of
network diversity by using all the paths (either disjoint or not)
that are available.
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In terms of the applicability of secure multipath routing, [31]
studies the implementation issues of protecting an attack-resis-
tant network (e.g., SOS [20] against the intruders that seek to
compromise a small portion of overlay nodes at random. Our
work, on the other hand, provides an analytical study for pro-
tecting an attack-resistant network using a worst-case attack
model. Besides attack-resistant networks, multipath routing has
also been applied to improve the resilience of other architec-
tures, such as sensor networks [12].

VIII. PRACTICAL ISSUES

In this section, we address several practical issues of our cur-
rent work and suggest directions for future research.

Redundant Routing: As mentioned in Section I, we assume
that some error correction mechanism is used to reliably deliver
data. Intuitively, redundant messages must be added to trans-
mitted data so that a receiver can recover all data as long as data
loss due to failed paths is modest [26], [28]. Although redun-
dant routing provides data reliability, part of the raw network
bandwidth is used to transmit redundant data, and this decreases
the effective network bandwidth for carrying actual data. Deter-
mining the suitable level of redundancy that best balances the
trade-off between data reliability and effective network band-
width is challenging and hence requires further investigation.

Fault-Tolerance: We currently assume that the nodes remain
stable throughout the execution of the algorithms, yet in prac-
tice, nodes can experience attacks or transient failures. To offer
fault-tolerance, we can either restart the algorithms, or adopt the
self-stabilizing solutionsin[14],[19].In particular, [19] enhances
the original Preflow-Push algorithm to adjust to the changes of
link states. However, the worst-case complexity of this solution is
proportional to the number of adjustments multiplied by the com-
plexity of the original Preflow-Push algorithm, leading to severe
performance degradation if the adjustments occur frequently.
Hence, we need to consider the trade-offs between restarting the
algorithms and invoking the self-stabilizing procedures.

Multiple Sessions: Our algorithms are on a per-session basis.
To support multiple sessions, one simple approach is to require
each link to allocate different bandwidths (or fraction bounds)
for the multiple sessions based on the application requirement.
However, such an approach may not fully utilize the link band-
width. For example, we may allocate the unused link bandwidth
of one session to other sessions. If a session is given more band-
width, it is subject to weaker fraction bounds. In Section V,
Experiment 1 shows that weaker fraction bounds can achieve
smaller worst-case attack cost. Thus, we have to examine how
to allocate fraction bounds for multiple sessions effectively to
achieve the optimal solution.

Quantifying Vulnerability: We currently assume that we can
characterize the damage of an attack via security constants (see
Section II) or attack probabilities (see Section VI). We empha-
size that our algorithms can still be applied regardless of the ac-
tual values of these parameters, although a sound attack-mod-
eling mechanism can provide better data allocation over mul-
tiple paths. We pose this problem as future work.

IX. CONCLUSION

We presented a distributed secure multipath solution that
comprises the Bound-Control and Lex-Control algorithms,
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both of which proactively combat link attacks in a distributed
fashion and provably converge to the desired optimal solutions.
We used simulation to demonstrate the resilience of both
algorithms toward different types of single-link and multi-link
attacks. Specifically, simulation results demonstrate that the
Lex-Control algorithm counters severe link attacks efficiently
within the first few lexicographic iterations, and hence both
routing security and algorithm performance can be effectively
achieved during actual implementation. Finally, we studied
the applicability of both algorithms using an attack-resistant
network as an example. By simulation, we evaluated their
performance and analyzed how they react to resiliency and
security under different attack-resistant network settings.
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